Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.

نویسندگان

  • David A Korasick
  • Harkewal Singh
  • Travis A Pemberton
  • Min Luo
  • Richa Dhatwalia
  • John J Tanner
چکیده

Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significance of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs. ENZYMES Proline dehydrogenase (EC 1.5.5.2); l-glutamate-γ-semialdehyde dehydrogenase (EC 1.2.1.88). DATABASES The atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank under accession number 5UR2. The SAXS data have been deposited in the SASBDB under the following accession codes: SASDCP3 (BbPutA), SASDCQ3 (DvPutA 1.5 mg·mL-1 ), SASDCX3 (DvPutA 3.0 mg·mL-1 ), SASDCY3 (DvPutA 4.5 mg·mL-1 ), SASDCR3 (LpPutA 3.0 mg·mL-1 ), SASDCV3 (LpPutA 5.0 mg·mL-1 ), SASDCW3 (LpPutA 8.0 mg·mL-1 ), SASDCS3 (BjPutA 2.3 mg·mL-1 ), SASDCT3 (BjPutA 4.7 mg·mL-1 ), SASDCU3 (BjPutA 7.0 mg·mL-1 ), SASDCZ3 (R51E 2.3 mg·mL-1 ), SASDC24 (R51E 4.7 mg·mL-1 ), SASDC34 (R51E 7.0 mg·mL-1 ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA

Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique p...

متن کامل

Effect of Solvent properties on Crystallinity and Morphology of Octavinyl-POSS: A Comparative Study

Polyhedral Oligomeric Silsesquioxanes (POSSs) are a class of hybrid structures synthesized through hydrolytic condensation (Sol-Gel method) of trifunctional silane monomers under specific conditions. Octavinyl silsesquioxane (OVS) nanostructures are comprised of a rigid inorganic silica core surrounded by vinyl functional groups with an under-developed synthesis procedure. Generally, POSS morph...

متن کامل

Blast Mitigation Analysis of Semi-Buried Structure

Semi-buried structures are most commonly used at first line of defense along the border between two countries. This demands investigation of their dynamic behaviour under blast loading. Herein, a semi-buried structure with foam sandwiched walls and buttresses to reduce the effect of blast is analysed. The effect of provision of different configurations of buttresses and foam core between two la...

متن کامل

Evidence That the C-Terminal Domain of a Type B PutA Protein Contributes to Aldehyde Dehydrogenase Activity and Substrate Channeling

Proline utilization A (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. Structures of type A PutAs have revealed the catalytic core consisting of proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) modules connected by a substrate-channeling tunnel. Type B PutAs also have a C-terminal domain of unknown function (CTDUF) that is...

متن کامل

Cloning of conserved regions of nontypeable Haemophilus influenzae hmw1 core binding domain

Colonization of nontypeable Haemophilus influenzae (NTHi) in nasopharynx causes respiratory tract disease. In 80% of clinical isolates, HMW proteins are the major adhesions and induce protective antibodies in the hosts. Therefore, it can be used as a vaccine candidate. The aim of this study is designing and cloning of the conserved regions of NTHi hmw1 core binding domain.In this study, the sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 284 18  شماره 

صفحات  -

تاریخ انتشار 2017